

 Understanding the Jamstack

 Robert Guss

 2021-01-05

Intro

[image: Understanding the Jamstack Cover]Understanding the Jamstack Cover

“Understanding the Jamstack” was written to help developers better understand the Jamstack architecture, philosophy, and ecosystem. Not only will you learn what the Jamstack is, but you will also build several projects to gain a better understanding of what is possible with it.

In the projects, you will learn the latest tools, technologies, and services in the ecosystem. Each project intentionally uses different tooling to give you as much experience with as many tools as possible.

This book is not for beginners. I assume you know, at the very least, HTML, CSS, and JavaScript.

Finally, I would like to thank you for taking the time to read this book. I have put in many hours creating it. It has been a labor of love and a passion of mine. I hope it will serve you well.

I would love to hear any feedback, corrections, criticism, etc. The book is open source and lives here if you find any typos or would like to contribute, feel free to submit a PR.

You can find me on Twitter, or you can contact me via email at howtocode@pm.me

Cheers,

Robert Guss

Dedication

To my wife Grace, son James and daughter Sophia.

Soli Deo Gloria.

How to use this book

0.1 GitHub Repo

You can find the repo for all of the projects here

0.2 Images

Some of the images throughout the book can be hard to see/read. To see them better, click on the image, and it will pop up into a lightbox at a much larger width and resolution.

0.3 Search

The search feature in the toolbar at the top does not work unless the site is served over a server. The easiest way to do this, in my opinion, is via an npm package called “serve.” To install it run the following command in your terminal.

npm i -g serve

Once it is installed, open your terminal to the directory of the book and run the following.

serve .

That will spin up a local server which you can visit at http://localhost:5000.

Your port number might be different.

Once you navigate to this address in your browser, the seach feature will work.

1 What is the Jamstack?

There has been an increasing trend over the last several years to break up traditional “monolithic” applications and architectures into smaller, more maintainable pieces & services. The Jamstack is a continuation of that trend. The Jamstack is fundamentally an architecture, a way of designing websites and applications. It is also a philosophy on how to build modern sites and applications.

It primarily centers around two very important concepts: pre-rendering and de-coupling. An important tool in the Jamstack architecture is the Static Site Generator which “pre-renders” all of your content into static files, ie .html, .css, .js, etc. When a user lands on your site or application, the server, most often a CDN, renders that static .html file to the user; making Jamstack sites & applications incredibly fast, secure & reliable.

De-coupling involves breaking up applications into smaller APIs, services, or systems. This de-coupling allows you to create services that are single purpose and ideally do one thing very well. You can more easily maintain, swap out, or replace those services with this architecture. It also allows you to take advantage of 3rd party services and APIs, allowing you to focus on the areas and domains you know well and let other experts handle the aspects you don’t. Do you honestly want to roll your own authentication or ecommerce solution from scratch, or would you gladly pay someone else to handle that for you?

1.1 JavaScript, API’s Markup

Now that you understand the two main concepts of the Jamstack, just what exactly is the “Jam” in Jamstack? The “Jam” in Jamsstack is an acronym that stands for JavaScript, APIs & Markup. These three components are the building blocks of any Jamstack site or application.

1.1.1 JavaScript

JavaScript has exploded in popularity over the years, and it is showing no signs of slowing down anytime soon. It is also what enables Jamstack sites to communicate with various APIs and services. JS is responsible for the dynamic aspects of a Jamstack application, which often seems to confuse people.

When people hear the word ‘static’ sites, they assume no dynamic or interactive elements. This could not be further from the truth. Modern front-end frameworks, like React, Vue, Angular, etc., allow for rich user interactions and UX. Jamstack sites are static in that they serve up pre-rendered static files. However, the UX can be as dynamic as you wish, as you will later discover in the projects of this book, where we build an ecommerce store and membership site.

1.1.2 API’s

APIs refer to the services or systems used to build a Jamstack site, the de-coupling aspect. These are most often third-party services, but you can also create your own. The Jamstack ecosystem is vibrant will all kinds of services for accepting payments, authentication/authorization, ecommerce, membership, databases, etc.

At the end of this book, there is a resources section with links to the various services and APIs available to build your sites and applications.

1.1.3 Markup

The last piece of the Jam is Markup. The markup ultimately ends up being HTML, but many Jamstack sites also make liberal use of Markdown. Markdown is a simple markup language that allows content writers and creators to write content without worrying about HTML formatting, tags, etc.

A static site generator typically takes this Markdown and converts it to HTML during the build process where a site is packaged up and prepared for deployment.

1.2 Tools & services

While every Jamstack architecture is unique, you will often find a common set of tools and services among them.

1.2.1 Static site generator

[image: Static Site Generator - source:https://bejamas.io/blog/static-site-generators/]Static Site Generator - source:https://bejamas.io/blog/static-site-generators/

A static site generator is a tool that takes your site and builds it into static files, which you then deploy to production, usually a CDN. Often these tools take .md or Markdown files, and convert them to .html pages. These tools are also responsible for compiling JS, CSS, PostCSS, images, fonts, etc., into their production-ready form.

1.2.2 CDN - content delivery network

[image: CDN (Content Delivery Network - source: https://imagekit.io/blog/what-is-content-delivery-network-cdn-guide/)]CDN (Content Delivery Network - source: https://imagekit.io/blog/what-is-content-delivery-network-cdn-guide/)

A CDN or content delivery network takes your site and deploys it to servers all around the world. No matter where your users are in the world, they can quickly download it from the nearest location.

For example, let’s say you live in the US, and your site lives on a server in New York. When a user from Australia tries to access it, that request travels from Australia to New York and back again before the page renders. With a CDN, your site is lives on a server in Australia, making the distance the request has to travel significantly shorter.

1.2.3 Headless CMS

[image: Headless CMS - source: https://bejamas.io/blog/headless-cms/]Headless CMS - source: https://bejamas.io/blog/headless-cms/

With a more traditional ‘monolithic’ CMS, the CMS is responsible for rendering views dynamically. Since a Jamstack site is pre-rendered, this is not possible. Therefore, a [headless CMS (https://jamstack.org/headless-cms/) is responsible solely for managing content, not the presentation or view layer. They typically expose the content via a REST API or GraphQL API. A static site generator will then extract the content needed during the build/compile step. Once the SSG has all of the content, it injects it into the templates and outputs .html files.

1.2.4 Continuous Integration & Deployment

[image: CI/CD - source: https://solidstudio.io/blog/ci-cd-pipelines.html]CI/CD - source: https://solidstudio.io/blog/ci-cd-pipelines.html

Another critical aspect of the Jamstack architecture is CI/CD. This allows a developer or content creator to automatically create a new build to production with the simple click of a button or via a merge into version control.

Most headless CMS’s will trigger a webhook when a content author saves a change. This webhook will then start the CI/CD pipelines on the hosting provider, building and deploying the latest changes. Most hosting providers also trigger a new build when a new commit merges into master.

1.2.5 Version control

[image: Git - source: https://www.nobledesktop.com/learn/git/git-branches]Git - source: https://www.nobledesktop.com/learn/git/git-branches

A Jamstack site can be stored entirely in a repo under version control, usually Git. This allows a developer to quickly clone it and get the entire site or application up and running locally within minutes. No longer will you have to worry about cloning a database or setting up/configuring complex local dev environments.

2 Jamstack Pros & Cons

Software development is all about trade offs. The Jamstack is by no means a perfect solution that fits every applications need, it is simply a solution. The reason why this book was written is to help you better understand when the Jamstack makes sense and when it does not. We are all guilty of wanting to try out the latest and greatest tech at every opportunity we can, but it would be wise of us to slow down, take a step back, and really take into consideration the trade offs of using a technology.

While the Jamstackc is not a “technology” per se, it definitely has trade offs. For some applications it makes a lot of sense to adopt this architecture, and for others not so much. In this chapter we will explore some of the pros and cons of the Jamstack.

2.1 Pros

2.1.1 Performance

[image: Performance impact at scale]Performance impact at scale

Performance is probably one of the greatest benefits to adopting the Jamstack. We all love speed. Developers always want things to be as fast as possible, but userss nowadays do as well. Performance is also a key metric for ranking in search results. The impact of slow loading times can also have significant impact on your bottom line.

[image: Performance infographic]Performance infographic

Most Jamstack sites are delpoyed to a CDN or Content Delivery Network which ensures that your site or application is served to your users from the shortest distant possible which makes load times blazing fast.

[image: CDN (Content Delivery Network - source: https://imagekit.io/blog/what-is-content-delivery-network-cdn-guide/)]CDN (Content Delivery Network - source: https://imagekit.io/blog/what-is-content-delivery-network-cdn-guide/)

2.1.2 Security

[image: Security - source: https://www.toptal.com/security/10-most-common-web-security-vulnerabilities]Security - source: https://www.toptal.com/security/10-most-common-web-security-vulnerabilities

Let’s face it, no one wants to get hacked. All to often these days we hear horror stories of some company’s system being compromised which results in millions of peoples personal information being exposed. Granted, most of us do not operate at such scale, however the threat is very real to all of us. Security should be of the utmost importance when building applications.

Since the Jamstack is comprised of pre-rendered static files that are read-only, we no longer have to worry about bad actors compromising our sytems. However, the services and API’s we integrate into our Jamstack applications can still be compromised. Having smaller systems and services though, reduces the surface area exposed to potential threats.

Checkout this article on WordPress hacking statistics in 2020

2.1.3 Reliability

[image: Reliability - source: https://undraw.co/illustrations]Reliability - source: https://undraw.co/illustrations

Users expect our applications to work 100% of the time and are rightfully very disgruntled when they do not. Minimizing the amount of down time, is essential to the success of any application or business. Like I mentioned before, having an application where the majority of it is pre-rendered, provides incredible reliability.

2.1.4 Cost

[image: Costs - source: https://undraw.co/illustrations]Costs - source: https://undraw.co/illustrations

Due to the advance of cloud infrastructure, hosting applications has never been cheaper. Hosting a collection of static files is arguably the cheapest solution out there. Not to mention the fact that most hosting services that specialize in the Jamstack offer CI/CD as part of their solution. This means you do not need a large dev ops, site reliablity or infrastructure team to maintain your infrastructure. A developer simply makes a push to a version control repo, usually GitHub, GitLab or Bitbucket and the CI/CD pipelines will automatically build the latest changes, push them to production and invalidate the cache automatically.

2.1.5 Small Teams

[image: Small Teams - source: https://undraw.co/illustrations]Small Teams - source: https://undraw.co/illustrations

The Jamstack allows small teams, even a single developer to build out large and powerful applications with a minimal amount of knowledge and effort. For example, a font-end developer is able to deploy a complete ecommerce solution without having to worry about user login/authentication, ecommerce, accepting payments, checkout, etc. They can leverage 3rd party tools and services that specialize in these areas, allowing them to focus on the areas they are most comfortable with, the UI and UX.

This aspect is incredibly powerful. With the increasing number of these 3rd party API’s and services it becomes significantly easier for small teams or a single dev to build out impressive applications in short periods of time. Not to mention startups and entrepreneurs looking to prototype or build an mvp to validate their ideas.

2.1.6 Developer Happiness

[image: Developer - source: https://undraw.co/illustrations]Developer - source: https://undraw.co/illustrations

This is an often overlooked aspect when building an application. The Jamstack is a rich ecosystem with a wide variety of tools and services. This means that developers have an incredible amount of options to choose from when building Jamstack applications. This kind of diversity enables devs to use the tools they know and love and to build applications the way in which they find most exciting, not only for themselves, but also for the business of course. The more diverse the web is, the most options we as developers have, the better the web is for everyone.

2.2 Cons

Now that we have sung the praises of the Jamstack, let’s also take a look at some of the drawbacks of this architecture. Afterall, software development is all about tradeoffs and the Jamstack is no exception.

2.2.1 Long build times

[image: Build Times - source: https://undraw.co/illustrations]Build Times - source: https://undraw.co/illustrations

Since all of the content is pre-rendered, the larger a site becomes, the longer this compile/build time takes. For small sites with only a few dozen pages or so, the compile time is negligible. However, as your site increases these build times also increase. Imagine you are a large news organization where you have several journalists posting articles all the time. If you have several thousands articles or pages, these slow compile times can become a serious issue.

Fortunately, many of the popular static site generators are building features that allow partial builds, which will only rebuild pages of your site that have actually changed rather than building the entire thing from scratch every time.

2.2.2 Up front costs - steep learning curve

[image: Up front costs- source: https://undraw.co/illustrations]Up front costs- source: https://undraw.co/illustrations

The Jamstack ecosytem is quite diverse with lots of tools and technologies available. It can be a little overwhelming at first to learn some of these tools and services. This aspect was the main motivating factor for writing this book. It can be a little daunting to learn this ‘new’ way of building sites and applications, which you will initially pay for up front. At first you or your team may be a little slow, but as time goes on speed will increase and will pay dividends going forward. If you are ok with a slower ramp up time, the investment will typically pay off in the long run.

2.2.3 Premature de-coupling

[image: De-coupling - source: https://undraw.co/illustrations]De-coupling - source: https://undraw.co/illustrations

The Jamstack architecture is by nature one compromised of smaller services. While this provides many benefits, it also can be problematic. Typically a large monolithic application is split up into smaller services, or micro services, to help alleviate the pains of working with it. A Jamstack application starts out de-coupled from the very beginning which can introduce unncessary complexity from the start.

Depending upon your needs and app, it may be best to start out building a monolithic application at first, and then break it up or adopt the Jamstack after the fact. This is something you and your team will need to consider, there is no one size fits all solution.

2.2.4 Content previewing

[image: Content Preview- source: https://undraw.co/illustrations]Content Preview- source: https://undraw.co/illustrations

In a tradional CMS like WordPress, Drupal, Craft, etc previewing a ‘draft’ page is trivial with just the click of a button as the CMS is rendering the content for you. This feature does not exist in Jamstack sites since the content is already pre-rendered.

This is a known issue and the Jamstack community is working hard to solve it. Many headless CMS’s and hosting providers are working to provide a working solution. Gatsby Cloud for instance offers previwing and incremental builds.

2.2.5 Third party services & API’s

[image: Stripe - source: https://undraw.co/illustrations]Stripe - source: https://undraw.co/illustrations

It may seem paradoxical to have third party services and API’s as a con, as this is an important aspect of the Jamstack architecture. The reason why they can be a con, is due to the fact that you do not control these services. You do not know when these services will be down, which could suddenly have a dramatic impact on your users, applications and bottom line. Again, this is a trade off you are willing to accept when you adopt these third party tools.

You also do not know the longevity of the businesses behind these services. What happens if they go under, or are bought out by another investor or company?

The good news, however, is that since your application is split into smaller pieces, these services are easier to swap out and replace with either another third party service or one you create yourself. The de-coupled nature of the architecture allows you to easily swap out these services as needed.

Projects

You can find the repo for all of the projects here

Some of the images throughout the book can be hard to see/read. To see them better, click on the image, and it will pop up into a lightbox at a much larger width and resolution.

3 Blog with Hugo, Netlify CMS & Zapier

3.1 Screencast

The screencast can be found here

3.2 Intro

We will be building a blog using the Hugo Static Site Generator and then deploy it to Netlify. Once our blog is complete and lives on Netlify, we will then integrate Zapier to trigger our site’s automatic CI/CD pipelines. Zapier will allow us to write blog posts ahead of time by setting a publish date sometime in the future. It will then notify Netlify to build our site so that the entire process is automated.

3.3 Installing Hugo

Hugo is written in the Go Programming Language, making it very easy to install since it is just a single binary. To install Hugo, head over to their Installation Docs and follow along for whatever operating system you are using. I am using Mac and have installed Hugo with Homebrew. I highly recommend using Homebrew if you are on a Mac.

3.4 Creating the blog

Now that you have Hugo installed, run the following command to create a new Hugo site:

Hugo new site blog

blog will be the name of the folder and project

If you are like me, you probably already have a directory where all of your web/code projects live on your computer. I have a folder called Projects on my laptop, which contains all of my projects. I recommend you have something similar on your machine and install it there.

We are going to be using a pre-configured theme for Hugo called Ink. You can download the theme from Github here. Click on the green button called “Code” and then “Download Zip.”

[image: Ink GitHub Download]Ink GitHub Download

When you download the zip file and unzip it, it is called Hugo-ink-master. Rename the folder to ink and then move it inside the themes folder.

Your Hugo project should now look like this:

[image: Ink Directory listing]Ink Directory listing

Inside of the ink theme folder is another folder called exampleSite. This folder contains some example content that we can use to populate our site with some pages and posts.

	Copy the directory themes/ink/exampleSite/archetypes/ and replace /archetypes/ located at the project’s root.

	Copy the directory themes/ink/exampleSite/content/ and replace /content/ located at the root of the project.

	Copy the directory themes/ink/exampleSite/data/ and replace /data/ located at the project’s root.

	Copy the file themes/ink/exampleSite/config.toml and replace config.toml located at the root of the project.

Now run the following command in your terminal to start the Hugo server:

Hugo serve

If everything is configured and set up correctly, you should see the following at http://localhost:1313/

[image: Harbor Home Page]Harbor Home Page

Your site might have a white background, which is fine; the theme has both light and dark themes, which are toggled based upon your system preferences.

3.5 Instant Reload & Creating new posts

Hugo’s built-in dev server will automatically reload the page whenever it detects a page. You can see this in action by modifying one of the posts located at content/posts/. If you make any changes to one of these files, the browser will reload and update with your changes virtually instantly! Pretty sweet right 😎

To create a new post, you will either have to stop the Hugo server, or open up another terminal window in the project directory and run the following command.

hugo new posts/my-first-post.md

Feel free to name the file whatever you like. You will need to modify what is known as the Front Matter at the top of the file.

If you open up one of the sample posts, you will see something like the following at the top:

title: 'Markdown Syntax Guide'
date: '2019-03-11'
description: 'Sample article showcasing basic Markdown syntax.'
tags: [markdown, CSS, HTML, themes]
categories: [themes, syntax]

This data is what Hugo uses to generate various data on our site.

This data is entirely customizable by you. With the correct theme and configuration modifications, you can have Hugo parse and use all kinds of custom data in the Front Matter.

Take the example I used above and paste it into your new post.

Here is what my post looks like:

title: 'My First Post'
date: '2020-12-12'
description: 'This is the description of my first post'
tags: [markdown]
categories: [syntax]

Content goes here...

The homepage should have been updated with your latest post and should look something like this:

[image: New post on the home page]New post on the home page

3.6 Pushing our project to GitHub

Before we can deploy our site, we need to first push our site up to GitHub.

If you do not have a GitHub account, please sign up for a free account as you are going to need it throughout this course.

Your GitHub may not be dark like mine. I am using their dark theme, which is not enabled by default.

Create a new repository by clicking the + in the upper right-hand corner, next to the bell icon, then “New repository.”

[image: GitHub create new repository]GitHub create new repository

Fill out the repository name and description field and choose whether to make the repo private or public. It doesn’t matter which one you choose. Netlify will work with both public and private repos.

[image: GitHub create repo screen]GitHub create repo screen

Then click the green button “Create repository.”

You should see a screen that looks similar to this:

[image: GitHub empty repo screen]GitHub empty repo screen

This next section requires you to have Git installed. If you do not have Git installed, you can download it here

Head back over to your terminal inside your Hugo directory and run the following, in this order.

git init # initializes a new git repository
git add . # adds all of the files to Git
git commit -m "init commit" # creates a new commit with the message "init commit"

Then you are going to need to copy the URL for your git repo in GitHub. You can find it in this section of your empty GitHub repo.

[image: GitHub empty repo instructions]GitHub empty repo instructions

Paste it into your terminal:

git remote add origin git@github.com:robertguss/hugo-blog.git

Then do:

git push -u origin master

Refresh GitHub, and you should see the following:

[image: GitHub repo pushed]GitHub repo pushed

Now you are all set and ready to deploy with Netlify.

3.7 Deploying to Netlify

Now that our site is all set up and running, let’s learn how to deploy our static site to Netlify. Netlify is free and is one of the most popular hosting providers for the Jamstack. Head on over to their site, and sign up for an account; use your GitHub account to sign up.

Once you sign up, you should land on a dashboard that looks like the following:

[image: Netlify Dashboard]Netlify Dashboard

Click on the “New site from Git” button.

On the next screen, click on the “GitHub” button.

[image: Netlify Connect to Git Provider]Netlify Connect to Git Provider

You will want to connect your GitHub account to Netlify and give them access to all of your repos.

You will then need to search for the repo we just created and select it. I named mine Hugo-blog so I can easily search for it in the search bar.

[image: Netlify Pick a repository]Netlify Pick a repository

It should automatically detect that this is a Hugo project and fill in the form fields for you. Just in case it doesn’t, the build command is Hugo, and the publish directory is public

[image: Netlify Deploy Settings]Netlify Deploy Settings

Then click the green button “Deploy site.”

You will then go back to the site dashboard, where the site will begin to deploy. It shouldn’t take very long before you see a random URL at the top.

[image: Netlify Site Deployed Dashboard]Netlify Site Deployed Dashboard

Click on the green URL; it should take you to our new Hugo site!

[image: Broken Site]Broken Site

Wait!?! Why is our site broken?

If we inspect our site using Chrome dev tools and open up the console, we can see we have some mixed content warnings and a reference to http://example.org. Where is this URL coming from?

[image: Broken Site Dev Console]Broken Site Dev Console

If you open up config.toml you will see the following on line 1:

baseURL = "http://example.org/"

Change it to the following:

baseURL = "/"

We will need to add these changes to Git and push them up to GitHub.

git add .
git commit -m "fixed base URL in config.toml"
git push

Once our change is on GitHub, Netlify will automatically detect this change and redeploy our site. This CI/CD comes for free from Netlify without us having to set up and configure anything! We simply push to our master branch, and Netlify takes care of the rest.

If you refresh your Netlify URL, the site is now fixed.

[image: Netlify Site Fixed]Netlify Site Fixed

3.8 Integrating Netlify CMS

Now that we have our blog setup and deployed live on Netlify, we will now integrate Netlify CMS, which allows us to update our content more easily. You can find the docs for the installation & setup here.

First, we need to create an admin folder, which is where the CMS will live. We need to make this folder inside of /static. This folder does not currently exist, so create a new folder called static in the project’s root and then within that another folder called admin.

Within the /static/admin folder create 2 new files: index.html & config.yml.

[image: Netlify CMS Admin Folder]Netlify CMS Admin Folder

Open up static/admin/index.html and add the following:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Content Manager</title>
 </head>
 <body>
 <!-- Include the script that builds the page and powers Netlify CMS -->
 <script src="https://unpkg.com/netlify-cms@^2.0.0/dist/netlify-cms.js"></script>
 </body>
</html>

Then within static/admin/config.yml add the following:

backend:
 name: git-gateway

Next, we need to add a collections: property to our config.yml, which will let the CMS know about our posts’ structure. The collections can be a little complicated at first, as there are many fields that the CMS provides. You can find out more details about them in the docs here.

For our blog, add the following to config.yml.

collections: # A list of collections the CMS should be able to edit
 - name: 'post' # Used in routes, ie.: /admin/collections/:slug/edit
 label: 'Post' # Used in the UI, ie.: "New Post"
 folder: 'content/posts' # The path to the folder where the documents are stored
 create: true # Allow users to create new documents in this collection
 fields: # The fields each document in this collection have
 - { label: 'Title', name: 'title', widget: 'string' }
 - { label: 'Publish Date', name: 'date', widget: 'datetime' }
 - { label: 'Description', name: 'description', widget: 'text' }
 - { label: 'Body', name: 'body', widget: 'markdown' }
 - { label: 'Tags', name: 'tags', widget: 'list' }
 - { label: 'Categories', name: 'categories', widget: 'list' }

The entire file should look like this:

backend:
 name: git-gateway

collections: # A list of collections the CMS should be able to edit
 - name: 'post' # Used in routes, ie.: /admin/collections/:slug/edit
 label: 'Post' # Used in the UI, ie.: "New Post"
 folder: 'content/posts' # The path to the folder where the documents are stored
 create: true # Allow users to create new documents in this collection
 fields: # The fields each document in this collection have
 - { label: 'Title', name: 'title', widget: 'string' }
 - { label: 'Publish Date', name: 'date', widget: 'datetime' }
 - { label: 'Description', name: 'description', widget: 'text' }
 - { label: 'Body', name: 'body', widget: 'markdown' }
 - { label: 'Tags', name: 'tags', widget: 'list' }
 - { label: 'Categories', name: 'categories', widget: 'list' }

Finally, we need to let Netlify CMS know where to put the images that we upload. We can do so by adding the following to our config.

media_folder: 'static/images/uploads' # Folder where user uploaded files should go
public_folder: '/images/uploads'

The entire file should now look like this:

backend:
 name: git-gateway

media_folder: 'static/images/uploads' # Folder where user uploaded files should go
public_folder: '/images/uploads'

collections: # A list of collections the CMS should be able to edit
 - name: 'post' # Used in routes, ie.: /admin/collections/:slug/edit
 label: 'Post' # Used in the UI, ie.: "New Post"
 folder: 'content/posts' # The path to the folder where the documents are stored
 create: true # Allow users to create new documents in this collection
 fields: # The fields each document in this collection have
 - { label: 'Title', name: 'title', widget: 'string' }
 - { label: 'Publish Date', name: 'date', widget: 'datetime' }
 - { label: 'Description', name: 'description', widget: 'text' }
 - { label: 'Body', name: 'body', widget: 'markdown' }
 - { label: 'Tags', name: 'tags', widget: 'list' }
 - { label: 'Categories', name: 'categories', widget: 'list' }

Now let’s push up our changes to that our latest code is on Netlify.

git add .
git commit -m "installed Netlify CMS"
git push

Next, let’s setup Netlify Identity, Netlify’s built-in authentication service, to log into our cms.

[image: Netlify Identity]Netlify Identity

Within your Netlify site’s dashboard, click on Site settings at the top and then Identity on the left sidebar. Then click on the Green “Enable Identity” button.

[image: Netlify Registration Preferences]Netlify Registration Preferences

You can leave the “Open” radio button selected for now and click “Save.”

[image: Netlify Registration Preferences Open]Netlify Registration Preferences Open

Scroll down towards the bottom of the page and click on “Enable Git Gateway” under the “Services” heading.

[image: Netlify Enable Git Gateway]Netlify Enable Git Gateway

3.8.1 Netlify Identity Widget

Next, we need to install the Netlify Identity Widget, which will allow us to interact with Netlify Identity for authentication and logging into the CMS.

Add this script include to the <head> section of /static/admin/index.html:

<script src="https://identity.netlify.com/v1/netlify-identity-widget.js"></script>

The entire file /static/admin/index.html should look like this:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0" />
 <title>Content Manager</title>
 <script src="https://identity.netlify.com/v1/netlify-identity-widget.js"></script>
 </head>
 <body>
 <!-- Include the script that builds the page and powers Netlify CMS -->
 <script src="https://unpkg.com/netlify-cms@^2.0.0/dist/netlify-cms.js"></script>
 </body>
</html>

We need to install this to the <head> of our Hugo static site so that it is included on every page. Paste inside of the <head> of /themes/ink/layouts/partials/header.html.

That entire file should look like this now:

<head>
 <meta charset="utf-8" />
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 {{- $title := (.Title) -}} {{- $siteTitle := (.Site.Title) -}} {{- if
 .IsHome -}}
 <title>
 {{ $siteTitle }} {{ if isset .Site.Params "subtitle" }}- {{
 .Site.Params.Subtitle }}{{ end }}
 </title>
 {{- else -}}
 <title>{{ $title }} - {{ $siteTitle }}</title>
 {{- end -}} {{- if isset .Site.Params "favicon" -}}
 <link rel="icon" type="image/png" href="{{" .Site.Params.favicon }} />
 {{- end -}}

 <meta name="viewport" content="width=device-width, initial-scale=1" />
 {{ with .OutputFormats.Get "rss" -}} {{ printf `
 <link rel="%s" type="%s" href="%s" title="%s" />
 ` .Rel .MediaType.Type .Permalink $.Site.Title | safeHTML }} {{ end -}} {{-
 template "_internal/schema.html" . -}} {{- template "_internal/opengraph.html"
 . -}} {{- template "_internal/twitter_cards.html" . -}}
 <link
 href="https://fonts.googleapis.com/css?family=Playfair+Display:700"
 rel="stylesheet"
 type="text/css"
 />
 <link
 rel="stylesheet"
 type="text/css"
 media="screen"
 href="{{ .Site.BaseURL }}css/normalize.css"
 />
 <link
 rel="stylesheet"
 type="text/css"
 media="screen"
 href="{{ .Site.BaseURL }}css/main.css"
 />
 {{- if isset .Site.Params "customcss" }}
 <link
 rel="stylesheet"
 type="text/css"
 href="{{ .Site.BaseURL }}{{ .Site.Params.customCSS }}"
 />
 {{ end }}

 <link
 id="dark-scheme"
 rel="stylesheet"
 type="text/css"
 href="{{ .Site.BaseURL }}css/dark.css"
 />
 {{- if isset .Site.Params "customdarkcss" }}
 <link
 id="dark-scheme"
 rel="stylesheet"
 type="text/css"
 href="{{ .Site.BaseURL }}{{ .Site.Params.customDarkCSS }}"
 />
 {{- end }} {{ if and (isset .Site.Params "social") (isset .Site.Params
 "feathericonscdn") (eq .Site.Params.featherIconsCDN true) -}}
 <script src="https://cdn.jsdelivr.net/npm/feather-icons/dist/feather.min.js"></script>
 {{- else if or (isset .Site.Params "social") (eq .Site.Params.mode "auto") (eq
 .Site.Params.mode "dark") -}}
 <script src="{{ .Site.BaseURL }}js/feather.min.js"></script>
 {{ end }}
 <script src="{{ .Site.BaseURL }}js/main.js"></script>
 {{- if isset .Site.Params "customjs" -}} {{- range .Site.Params.customJS }}
 <script src="{{ $.Site.BaseURL }}{{ . }}"></script>
 {{- end }} {{- end }}
 <script src="https://identity.netlify.com/v1/netlify-identity-widget.js"></script>
</head>

Our final step is to include a simple JS snippet that Netlify provides us in their install docs. This snippet will handle the redirection to the CMS admin dashboard upon successfully logging in.

Add the following snippet to /themes/ink/layouts/partials/footer.html.

<script>
 if (window.netlifyIdentity) {
 window.netlifyIdentity.on('init', (user) => {
 if (!user) {
 window.netlifyIdentity.on('login', () => {
 document.location.href = '/admin/';
 });
 }
 });
 }
</script>

The entire file should now look like:

<div class="footer wrapper">
 <nav class="nav">
 <div>
 {{ dateFormat "2006" now }} {{ with .Site.Copyright }} {{ . | safeHTML }}
 | {{ end }} Ink theme on
 Hugo
 </div>
 </nav>
</div>

{{ template "_internal/google_analytics_async.html" . }} {{- with
.Site.Params.Social -}}
<script>
 feather.replace();
</script>
{{- end -}}

<script>
 if (window.netlifyIdentity) {
 window.netlifyIdentity.on('init', (user) => {
 if (!user) {
 window.netlifyIdentity.on('login', () => {
 document.location.href = '/admin/';
 });
 }
 });
 }
</script>

Now let’s push up our changes:

git add .
git commit -m "added Netlify Identity"
git push

Now navigate to your Netlify URL and add /admin at the end. For instance, mine is https://reverent-liskov-4cbe35.netlify.app/admin.

[image: Netlify Identity Login]Netlify Identity Login

Click on the “Login with Netlify Identity” button.

Then click on the “Sign up” tab, fill out the form and click the “Sign up” button.

*Make sure to use your actual email address as you will need to click a link to confirm your identity.**

[image: Netlify Identity Signup]Netlify Identity Signup

Open the email and confirm your email address. You should now be logged in and presented with the CMS admin dashboard.

[image: Netlify CMS Dashboard]Netlify CMS Dashboard

You can now edit and create new posts with Netlify CMS!

Open up one of the posts, edit some of the content, and click on the “Publish” button in the upper right-hand corner.

Then click “Publish Now.”

[image: Netlify CMS Publish Button]Netlify CMS Publish Button

Clicking this button will send a webhook to Netlify, which will begin to build and deploy the site automatically. Pretty slick 😎

One thing to keep in mind is that when you publish your site via the CMS, Netlify is creating Git commits for you in the background. So if you make some changes to your site via the CMS, make sure you run git pull to pull down your repo’s latest changes. Otherwise, your local copy and the version up on GitHub will be out of sync.

3.9 Integrating Zapier for automatic deploys

I learned this neat trick from Flavio Copes. You can check his post here

This next section includes using a service known as Zapier, an automation framework that we will utilize to deploy our site automatically. You may be wondering why we would need this or what is the use case. Let me explain.

More often than not, most people write blog articles in advance and then schedule a publish date sometime in the future. For instance, you may want to publish a new blog post every two weeks or once a month and will often have several articles ready to go so that you have a “buffer” of content before you have to write more. Virtually every blogging system and cms allow this when you have a traditional monolithic architecture like WordPress or similar. However, since this is a static site and we do not have a backend, how can we accomplish this? The key is to use Zapier and Hugo’s publish date.

Hugo has this feature built-in already, where if you have a date set for one of your articles in the future, it will not build the page until that date. For example, if I set the date two weeks from today, Hugo will not make that page until then. We can trigger as many builds of our site as we want, and that article will not show up until two weeks from today.

Knowing this, we can then use Zapier to send a webhook to Netlify at whatever interval we want, which will trigger a new build. So if you are publishing every two weeks, you can set up Zapier to send a webhook every two weeks. You could even have Zapier send a webhook every single day if your schedule is inconsistent. That way, you only have to worry about setting the correct date in the articles front-matter, and the deployment and publishing cycle is handled for you automatically!

For this tutorial, we will be setting up Zapier to send a webhook every day.

Before we can set up Zapier, we need first to configure Netlify to accept our Webhook from Zapier.

3.9.1 Netlify Webhook Setup

Head back over to your Netlify dashboard and click on “Site settings” and then “Build & deploy” on the left sidebar. Scroll down until you see a “Build hooks” section.

[image: Netlify Build Hooks]Netlify Build Hooks

Click the “Add build hook” button.

Give your hook a name, and then save it.

[image: Netlify Build Hook Name]Netlify Build Hook Name

Netlify will then give you a URL for the webhook, like so:

[image: Netlify Build Hook Url]Netlify Build Hook Url

Copy this down or keep this tab open as we will need this Url for Zapier.

3.9.2 Zapier Webhook Setup

Head on over to Zapier and create a free account. After logging in, Go to this [link (https://zapier.com/apps/schedule/integrations/webhook/2845/send-webhook-post-requests-on-a-daily-schedule) to see how to configure a webhook POST request.

[image: Zapier Webhook Post]Zapier Webhook Post

Click on the “Try it” button.

On the next screen, I set up mine to trigger on the weekends and at 7 am.

[image: Zapier Webhook Post]Zapier Webhook Post

After clicking “Save and Continue,” click on the “Test Trigger” button.

[image: Zapier Test Trigger]Zapier Test Trigger

Then click on the 2nd section and add in the URL from Netlify. I set my payload type to “Raw.”

[image: Zapier Post Setup]Zapier Post Setup

You can leave the rest of the fields as they are and then click “Save and continue.”

You will then see a “Test action” screen. Click the “Test & Continue” button.

[image: Zapier Test Action]Zapier Test Action

If all goes well, you should see the following.

[image: Zapier Test Success]Zapier Test Success

Then click on the “Turn on Zap” button to enable it.

Head back to your Netlify dashboard and see if the CI/CD was triggered. Click on “Deploys” at the top of the screen and check to see the latest deploy. It should say something like “Deploy triggered by hook: Zapier at 7 am”

[image: Netlify Hook Success]Netlify Hook Success

Zapier will send a webhook at 7 am every day, and Netlify will deploy a fresh copy of your site at the same time. All you have to do is enter the date in your article’s front-matter on which you would like your article to be published live on your site, and the rest is handled for you automatically!

3.10 GitHub Repo

You can find the completed project here inside of Hugo-Blog/final GitHub Repo

3.11 Wrap up

In this tutorial, we learned how to create a Jamstack site using the Hugo static site generator. We also integrated Netlify CMS to make it easy to update our content and deployed our site to Netlify. Finally, we set up Zapier to trigger automatic deploys on Netlify every day.

4 Membership Site with Eleventy & Memberstack

4.1 Screencast

The screencast can be found here

4.2 Intro

For this project, we are going to be building a membership site using the Eleventy static site generator and Memberstack. We will then deploy our membership site with Surge.

4.3 Installing Eleventy

First, you will need to download the course repo and use the start/ folder located within Eleventy-Membership. This repo contains the theme for our site, which will allow us to hit the ground running. Memberstack provided the theme as just a .zip of HTML, CSS, and js files. I then took all of those files and integrated them with Eleventy to make our lives easier and so that you can become familiar with another static site generator.

Open your terminal inside of the start/ folder and install the npm packages.

npm i

Then start the eleventy server to serve up our site.

npm start

The terminal should display various URLs to access the site.

[image: Eleventy Server urls]Eleventy Server urls

I like to use http://localhost:8080/, which is the “Local” URL.

When you open the URL in your browser, you should see a site that looks like this.

[image: Eleventy Homepage]Eleventy Homepage

It is a relatively simple site with some placeholder content and two pricing tables at the very bottom. Take a couple of mins to click around on the navigation links to see what the pages look like. There is a login form, a signup form, and two membership areas.

We will be using Memberstack for handling our user login, authentication, sessions, and payments. Memberstack will handle all of the backend, whereas we just have to provide the front-end content for our members.

4.4 Integrating Memberstack

Before we can begin using Memberstack, you need to sign up for a free account. Once you have signed up and log in, you will see the following screen.

[image: Memberstack Select a Builder]Memberstack Select a Builder

Choose “HTML/CSS”

On the next screen, give your site a name. I called my “Eleventy Membership,” but you can name it whatever you would like. Also, make sure to select the need to accept payments as we will be integrating with Stripe later. Then click the “Let’s go!” button.

[image: Memberstack Website Details]Memberstack Website Details

You will land on your membership dashboard for our site.

[image: Memberstack Dashboard]Memberstack Dashboard

Memberstack gives us a checklist we need to follow to set up our new site. Click on the “Create a membership” button on the Setup Checklist.

[image: Memberstack Create a membership]Memberstack Create a membership

On the next screen, click on the “New Membership” button. Here is where we will set up our two memberships, “basic” & “premium”. Let’s start with the basic plan first.

4.4.1 Basic Membership

[image: Memberstack Basic Plan Settings]Memberstack Basic Plan Settings

	Enter “Basic Plan” for the plan name.

	Select the “Require Payment” button.

	Enter $49 for the price. This is the price listed on the pricing tables of our site.

	Select “Monthly” for the billing frequency

	Free Trial, Setup Fee & Collect taxes can remain off for now.

Now click on the “Hide Content” button in the “Members-only content” section. This section will make sure that users who do not have access to either membership plan cannot access the content.

	Enter “Basic Plan” for the content name.

	Enter basic for the “Hide pages & folders” field. This will hide all of the basic plan content from users who do not have a basic plan.

	Enter login for the “Access denied page.” This will redirect users who try to access the basic account page who are not logged in or are not paying subscribers.

	Click the “Create” button at the bottom.

[image: Memberstack Basic Page Hide Content]Memberstack Basic Page Hide Content

For the “Page after signup” & “Page after login” enter basic/account/

[image: Memberstack Basic Page After Signup]Memberstack Basic Page After Signup

Memberstack will redirect any user who has a “basic plan” membership to the basic account page after signing up and each time they log in.

Then click the “Create Membership” button.

Your Membership dashboard should now look like this.

[image: Memberstack Basic Plan Dashboard]Memberstack Basic Plan Dashboard

4.4.2 Premium Membership

Click on the “New Membership” button.

[image: Memberstack Premium Plan Settings]Memberstack Premium Plan Settings

	Enter “Premium Plan” for the plan name.

	Select the “Require Payment” button.

	Enter $499 for the price. This is the price listed on the pricing tables of our site.

	Select “Yearly” for the billing frequency

	Free Trial, Setup Fee & Collect taxes can remain off for now.

Now click on the “Hide Content” button in the “Members-only content” section. This section will make sure that users who do not have access to either membership plan cannot access the content.

	Enter “Premium Plan” for the content name.

	Enter premium for the “Hide pages & folders” field. This will hide all of the premium plan content from users who do not have a premium plan.

	Enter login for the “Access denied page.” This will redirect users who try to access the premium account page who are not logged in or are not paying subscribers.

	Click the “Create” button at the bottom.

[image: Memberstack Premium Page Hide Content]Memberstack Premium Page Hide Content

Make sure that both the “Basic Plan” & “Premium Plan” are on. Our premium members get access to both basic and premium content.

[image: Basic and Premium Plan Content]Basic and Premium Plan Content

For the “Page after signup” & “Page after login” enter premium/account/

[image: Memberstack Premium Page After Signup]Memberstack Premium Page After Signup

Memberstack will redirect the users who have a “premium plan” membership to the premium account page after signing up and after logging in.

Then click the “Create Membership” button.

Your Membership dashboard should now look like this.

[image: Memberstack Premium Plan Dashboard]Memberstack Premium Plan Dashboard

4.4.3 Integrating Memberstack Memberships

Now that we have both of our memberships configured, we need to integrate them on our site so that our users can signup for them.

Underneath the “Membership Plans” section of our dashboard are both membership plans. To the right of those are buttons called “Signup link” this is the code snippet we need to link our memberships on our site to Memberstack. Click on the “Signup link” for the Basic plan first.

[image: Memberstack Basic Signup Link]Memberstack Basic Signup Link

Then click the “I’d rather use data attributes” and copy the attribute.

Then head back over to our site’s code and open the index.html file and scroll to around line 232 and add the the data attribute to our basic signup link like so:

<a
 data-ms-membership="5fd8ca13..."
 href="signup"
 class="button full-button w-inline-block"
>
 <div>Get Started</div>

Now let’s do the same for our premium membership. Head back to Memberstack and copy the data attribute for the premium plan.

[image: Memberstack Premium Signup Link]Memberstack Premium Signup Link

Add the data attribute to our premium link around line 247

<a
 data-ms-membership="5fd8cfb1..."
 href="signup"
 class="button full-button secondary-button w-inline-block"
>
 <div>Get Started</div>

4.4.4 Installing Memberstack Header code

Next, we need to install the Memberstack <script> tag in the <head> of our site. Head back over to the main dashboard of Memberstack and click on the “Install header code” underneath the Setup Checklist.

[image: Memberstack Install Header Code]Memberstack Install Header Code

Copy the code snippet in there and then paste the snippet just above the closing </head> tag in src/_includes/layouts/base.html. The file should now look like this:

<!-- Additional Code Above -->
<link
 href="/asssets/images/Freebie-Favicon.png"
 rel="shortcut icon" type="image/x-icon">

 <link
 href="images/images/Freebie-Webclip.png"
 rel="apple-touch-icon">

 <!-- Memberstack -->
 <script
 src="https://api.memberstack.io/static/memberstack.js?custom"
 data-memberstack-id="751ee1...">
 </script>
</head>

Note: the formatting & indentation might be different in your file.

4.5 Signup Form

Next, we need to integrate Memberstack without Signup Form. On the Memberstack main dashboard, click on the “Add a Login form” under the “More Features” section.

[image: Memberstack Add Login Form]Memberstack Add Login Form

You will be taken to the “Login” form section, but we need to set up the “Signup” form first. So click on the “Signup” tab at the top.

[image: Memberstack Signup Formm]Memberstack Signup Formm

By default, the Signup form comes with fields for email and password. Our form also has a field for first name and last name.

[image: Eleventy Signup Form]Eleventy Signup Form

Click on the “Add custom fields” button to add the First Name Field.

[image: Memberstack First Name Field]Memberstack First Name Field

Add another field for the Last Name.

The signup form should now look like this:

[image: Memberstack Signup Form All Fields]Memberstack Signup Form All Fields

Scroll to the bottom of the form under the “Signup form type” and select Build a custom signup form.

[image: Memberstack Build a custom signup form]Memberstack Build a custom signup form

Copy the data attribute.

[image: Memberstack signup form data attribute]Memberstack signup form data attribute

We now need to add this to the signup <form> element on our site. Add the data attribute to the form element in signup.html around line 12

<form
 data-ms-form="signup"
 id="sign-up"
 name="wf-form-Sign-up-Form"
 data-name="Sign up Form"
 method="post"
 ms-signup="true"
 class="login-form"
></form>

4.6 Login Form

Next, let’s set up our login form.

Click on the “Login” tab at the top of the Memberstack Dashboard.

[image: Memberstack Login Form]Memberstack Login Form

Our site’s login form only has an email and password field, so the default fields that Memberstack provides are just what we need.

[image: Eleventy Login Form]Eleventy Login Form

On the Memberstack dashboard, scroll to the bottom and select “Build a custom login form,” just like we did for the signup form.

[image: Memberstack Custom Login Form]Memberstack Custom Login Form

Then copy the data attribute and paste it into the <form> element of the login form around line 13 of login.html

<form
 data-ms-form="login"
 id="login"
 name="wf-form-login"
 data-name="login"
 method="post"
 ms-login="true"
 class="login-form"
></form>

4.7 Deploying to Surge

Now that we have our site set up with Memberstack, we need to deploy it to a live URL for testing. We will be deploying with Surge.

First, we need to install Surge as a global NPM package.

npm i -g surge

Next, we need to build our static site.

npm run build

Next, we can deploy our site with this simple command.

surge dist

This tells Surge to deploy our dist folder, which contains our built static site.

If this is the first time you are using Surge, you will be asked to create an account. After doing so, you should see something similar to this.

[image: Surge Domain]Surge Domain

Press enter, and in a few seconds, your site will be live. Head on over to the domain surge provides and open it in your browser.

[image: Surge Homepage]Surge Homepage

Copy the domain that Surge gives you and paste it into the deploy script within package.json like so:

{
 "name": "eleventy-memberstack",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "start": "npx eleventy --serve",
 "build": "npx eleventy",
 "deploy": "npm run build && surge dist --domain faulty-hate.surge.sh"
 },
 "keywords": [],
 "author": "",
 "license": "ISC",
 "devDependencies": {
 "@11ty/eleventy": "^0.11.1"
 }
}

This is a custom script I wrote that will automatically build our eleventy site and deploy to Surge whenever we run.

npm run deploy

After you have updated the script with your surge URL, run the deploy command to ensure everything is working correctly.

[image: Surge deploy command]Surge deploy command

4.8 Testing Memberstack Integration

Now that our site is live let’s test to ensure Memberstack is working correctly.

First, let’s try to access the /basic/account page, which is reserved only for users who have a basic membership. On your live surge site, go to https://faulty-hate.surge.sh/basic/account, replacing the domain with whichever one Surge provided you.

You will be redirected to the login page.

Now try to access the premium account by going to /premium/account/. For example, https://faulty-hate.surge.sh/premium/account/.

You will be redirected to the login page.

4.8.1 Basic Membership Signup

Now let’s try to signup for a basic plan. Scroll to the bottom of the home page to the pricing tables and click on the basic plan. Fill out the signup form and press “Continue.” You should be prompted with a modal like this:

[image: Eleventy Basic Plan Purchase]Eleventy Basic Plan Purchase

Click confirm and pay.

After a few seconds, you will be redirected to /basic/account, the basic account membership area. So far, so good! Memberstack handles all of the session and authentication for us, so we are currently logged in as a basic member.

Now that we are logged in, try to go to /premium/account, and you should be redirected to the login page.

So our basic memberships are working, and these members are unable to access the premium section of our site. Awesome!

4.8.2 Logging out

Now that we are signed in, we need a way for our users to sign out. We need to add a logout button to the nav of our /basic/account page right next to the “Change Plan” button.

Add the following to src/basic/account.html <nav> tag.

Log Out

The entire <nav> should look like this.

<nav role="navigation" class="homepage-nav-menu w-nav-menu">
 Log Out
 Change Plan
</nav>

The entire account.html file should look like this.

{% extends "layouts/base.html" %} {% block content %}

<div
 data-collapse="medium"
 data-animation="default"
 data-duration="400"
 class="navbar w-nav"
>

 <nav role="navigation" class="homepage-nav-menu w-nav-menu">
 Log Out
 <a href="/basic/upgrade" class="button navbar-cta w-nav-link"
 >Change Plan
 </nav>

 <div class="menu-button w-nav-button">
 <div class="w-icon-nav-menu"></div>
 </div>
</div>
<div class="delete-me-section">
 <h1 class="account-h1">Basic Account</h1>
 <div class="w-richtext">
 <p>Member's only areas can be any combination of the following:</p>

 an individual page
 a group of pages
 folders
 CMS items
 or entire CMS collections

 </div>
</div>

{% endblock %}

With that in place, let’s push our latest changes to Surge and test.

npm run deploy

You should still be logged in, so navigate to /basic/account and you should see our new “Log Out” button at the top. When you click it, you should be redirected to the home page. Try to access /basic/account again, and you will be redirected to the home page.

4.8.3 Premium Membership Signup

Now that we have confirmed our basic membership is working, let’s test out the premium membership.

On the home page, scroll to the pricing tables at the bottom and click on the premium membership. Fill out the form, and you will see the Premium payment form.

[image: Eleventy Premium Plan Checkout]Eleventy Premium Plan Checkout

You should be redirected to the /premium/account page. Since premium also included access to everything the basic membership has, you should also be able to access /basic/account.

This page will also need a log out button, but you already know how to do that. If you want one on this page as well, by all means, go for it.

4.9 Connecting Stripe for payments

This next section is optional and is only useful if you are launching a live membership site. Currently, there is no way to test payments taken from Memberstack with Stripe while in the demo/test mode. Your membership site must be live for the charges to show up in Stripe.

All of our testing thus far has been in test mode. If you noticed, when we tried to signup for these plans, we didn’t have to enter in any actual credit card information. We can connect Stripe so we can receive real money from real customers.

First, you will need to set up a free Stripe account. After that, head back over to the Memberstack dashboard.

In the main Memberstack dashboard, there is a settings section; click on that to expand it and click on “Connect to Stripe.”

[image: Memberstack Connect to Stripe]Memberstack Connect to Stripe

On this screen, click the big button to connect to Stripe, you should see a screen like this.

[image: Stripe connect to Memberstack]Stripe connect to Memberstack

Click the “Connect my Stripe account” button.

You should then be redirected back to Memberstack and see the following:

[image: Memberstrack Stripe Successfully Connected]Memberstrack Stripe Successfully Connected

4.10 GitHub Repo

You can find the project repo here inside of Eleventy-Membership/final GitHub Repo

4.11 Wrap up

Well, that wraps up this project. To recap, we used Memberstack to create a membership Jamstack site with two membership plans “basic” & “premium.” Within Memberstack, we could designate which portion of the site basic and premium members can access and redirect users who do not have the appropriate access. We also learned how to integrate Stripe if we decide to launch a live membership site.

We also gained some experience with the Eleventy static site generator. This SSG is quite popular and is growing ever more so in popularity. It is quite simple to use and has a lot of features built-in by default. It provides several templating languages and other features that make getting Jamstack sites up and running quickly.

For hosting and deployment, we used Surge. Surge is a simple NPM package that allows us to publish static sites with just a single command.

5 Ecommerce Site with Gatsby & Stripe Checkout

5.1 Screencast

The screencast can be found here

5.2 Intro

This project builds on top of the Gatsby E-commerce Tutorial provided in the official Gatsby docs, and the Use Shopping Cart Example repo.

In this project, we will be creating a simple e-commerce web site with Gatbsy and Stripe checkout. Stripe checkout is client-side checkout that allows us to integrate a complete checkout experience without a backend.

5.3 Installing Gatsby

First, you will need to download and install Gatsby

npm i -g gatsby-cli

With the CLI installed, create a new project.

gatsby new stripe-checkout
name the project whatever you would like

Open up the project and run the development server.

gatsby develop

Once the server is up and running, you should be able to preview the site at http://localhost:8000/.

[image: Gatsby Default Starter]Gatsby Default Starter

5.4 Installing & Configuring Stripe

You will need to create a Stripe account if you don’t already have one. You can sign up for a free account to provide all that we need for our project.

Once you have your Stripe account set up, head back over to your terminal to install the Stripe NPM packages.

npm install @stripe/stripe-js gatsby-source-stripe

With both of these packages installed, we now need to add the gatsby-source-stripe plugin to our gatsby-config.js file. Add the following to the config.

{
 resolve: `gatsby-source-stripe`,
 options: {
 objects: ["Price"],
 secretKey: 'secret key goes here',
 downloadFiles: false,
 }
},

You will notice a key called secretKey that we need to populate with Stripe’s secret key. We will configure this next.

The entire file should look like this.

module.exports = {
 siteMetadata: {
 title: `Gatsby Default Starter`,
 description: `Gatsby Default Starter`,
 author: `@gatsbyjs`,
 },
 plugins: [
 `gatsby-plugin-react-helmet`,
 {
 resolve: `gatsby-source-filesystem`,
 options: {
 name: `images`,
 path: `${__dirname}/src/images`,
 },
 },
 `gatsby-transformer-sharp`,
 `gatsby-plugin-sharp`,
 {
 resolve: `gatsby-plugin-manifest`,
 options: {
 name: `gatsby-starter-default`,
 short_name: `starter`,
 start_url: `/`,
 background_color: `#663399`,
 theme_color: `#663399`,
 display: `minimal-ui`,
 icon: `src/images/gatsby-icon.png`,
 },
 },
 {
 resolve: `gatsby-source-stripe`,
 options: {
 objects: ['Price'],
 secretKey: 'secret key goes here',
 downloadFiles: false,
 },
 },
],
};

Head back over to the Stripe dashboard and click on “Developers” and then “API keys” on the left-hand side.

[image: Stripe developer API keys sidebar]Stripe developer API keys sidebar

make sure to toggle on the “Viewing test data” as well.

In the “Standard keys” section, you should see the following.

[image: Stripe Standard Keys]Stripe Standard Keys

Click the “Reveal live key” to show your secret key and then copy it.

5.4.1 Creating .env variables

We do not want to paste our secret key into our gatsby config because it would expose it to the outside world. This is a huge security risk! To protect our keys, we will create a .env file, which allows us to use our keys without exposing them to the public.

In the root of our gatsby project, create two files called .env.development & .env.production

touch .env.development
touch .env.production

Within both files, add both your Publishable and Secret keys like so:

GATSBY_STRIPE_SECRET_KEY=sk_test_FOlN...
GATSBY_STRIPE_PUBLISHABLE_KEY=pk_test_ibqK...

The GATSBY prefix is important because we need these variables exposed to the client. You can read more about this here

.env.production will contain the keys we need for production; for the sake of this example, our keys will be the same, but in a real-world project, they would be different.

Now let’s add this file to .gitignore.

dotenv environment variable files
.env*

This may already exist from when we first created our project, but double-check just in case.

Now we need to use these env variables in our Gatsby config.

{
 resolve: `gatsby-source-stripe`,
 options: {
 objects: ['Price'],
 secretKey: process.env.GATSBY_STRIPE_SECRET_KEY,
 downloadFiles: false,
 },
},

We also need to include our .env.development file in our config to have access to the variables. Add the following snippet to the top of the gatsby-config.js file just above the module.exports = {

require("dotenv").config({
 path: `.env.${process.env.NODE_ENV}`,
})

module.exports = {

5.4.2 Stripe Checkout

Now let’s set up and configure Stripe checkout. Head over to https://dashboard.stripe.com/settings/checkout. Under the “Next steps” section, click the “Enable client-only integration” button.

[image: Stripe enable clienttt only integration]Stripe enable clienttt only integration

Click “Allow” on the modal that pops up.

[image: Stripe allow modal]Stripe allow modal

You should now see some additional fields in the “Next steps” section.

[image: Stripe client-only fields]Stripe client-only fields

Next, we need to create some products in Stripe to sell on our site. Click on the “Create your first product” link.

[image: Stripe create your first product link]Stripe create your first product link

On the next screen, click on the “Add Product” button to add our first product.

For this example store, we are going to be selling t-shirts for developers. So let’s find some images of dev t-shirt’s that we can sell. You are free to use whatever images or products you would like. I am going to use some photos I found from Redbubble

Enter a name for the product, upload the image, set the price, and check the “one-time” button.

Make sure to add a few products so that we have some actual products to populate our store page with.

[image: Stripe product information]Stripe product information

5.5 Adding Stripe as a utility function

Per Gatsby’s docs, they recommend that we wrap Stripe.js into a utility function so that we can use it across multiple pages.

Create a new file in src/utils/stripejs.js and add the following.

you will need to create the utils folder as well

import { loadStripe } from '@stripe/stripe-js';

let stripePromise;
const getStripe = () => {
 if (!stripePromise) {
 stripePromise = loadStripe(process.env.GATSBY_STRIPE_PUBLISHABLE_KEY);
 }
 return stripePromise;
};

export default getStripe;

5.6 Adding a shopping cart

We will be installing a shopping cart package that will allow our customers to add t-shirts to their cart, as this does not come out of the box with Stripe checkout. Otherwise, customers will only be able to buy a single product at a time.

We will be installing Use-Shopping-Cart

Install the shopping cart with the following command.

npm install --S use-shopping-cart

5.7 Displaying our products

Now that we have some products uploaded to Stripe, and your shopping cart installed, we need to display them on our Gatsby site.

The following code comes from the Use Shopping Cart Example Gatsby Repo with only slight modifications made by me

5.7.1 Index Page

Withing /pages/index.js, add the following.

import React from 'react'

import Layout from '../components/layout'
import SEO from '../components/seo'

import Skus from '../components/Products/Skus'
import CartOverview from '../components/CartOverview'

import { loadStripe } from '@stripe/stripe-js'
import { CartProvider } from 'use-shopping-cart'

const stripePromise = loadStripe(process.env.GATSBY_STRIPE_PUBLISHABLE_KEY)

const CartExample = () => (
 <Layout>
 <SEO title="Cart Example" />
 <h1>Checkout with cart example</h1>
 <h2>
 With{' '}
 use-shopping-cart
 </h2>
 <CartProvider
 mode="client-only"
 stripe={stripePromise}
 successUrl={`${window.location.origin}/page-2/`}
 cancelUrl={`${window.location.origin}/`}
 currency="USD"
 allowedCountries={['US', 'GB', 'CA']}
 billingAddressCollection={true}
 >
 <CartOverview />
 <Skus />
 </CartProvider>
 </Layout>
)

export default CartExample

5.7.1.1 Index Page Breakdown

<CartProvider // This component comes from the use-shopping-cart package
 mode="client-only" // allows client-side checkout
 stripe={stripePromise} // Our Stripe instance so we can communicate with the Stripe API
 successUrl={`${window.location.origin}/page-2/`} // the url to redirect to after a successful purchase
 cancelUrl={`${window.location.origin}/`} // the url to redirect to when they cancel a purchase
 currency="USD" // US Dollars is the type of currency we are accepting
 allowedCountries={['US', 'GB', 'CA']}
 billingAddressCollection={true} // allows the collection of the users billing address for Stripe
>
 <CartOverview /> // We will create and go over this component later
 <Skus /> // We will create and go over this component next
</CartProvider>

5.7.2 Skus Component

Create a new folder called Products inside the src/components folder and create a file called Skus.js.

// src/components/Products/Skus.js
import React from 'react'
import { graphql, StaticQuery } from 'gatsby'
import SkuCard from './SkuCard'

const conatinerStyles = {
 display: 'flex',
 flexDirection: 'row',
 flexWrap: 'wrap',
 justifyContent: 'space-between',
 padding: '1rem 0 1rem 0',
}

export default (props) => (
 <StaticQuery
 query={graphql`
 query ProductPrices {
 prices: allStripePrice(
 filter: { active: { eq: true }, currency: { eq: "usd" } }
 sort: { fields: [unit_amount] }
) {
 edges {
 node {
 id
 active
 currency
 unit_amount
 product {
 id
 name
 images
 }
 }
 }
 }
 }
 `}
 render={({ prices }) => (
 <div style={conatinerStyles}>
 {prices.edges.map(({ node: price }) => {
 const newSku = {
 sku: price.id,
 name: price.product.name,
 price: price.unit_amount,
 currency: price.currency,
 image: price.product.images,
 }
 return <SkuCard key={price.id} sku={newSku} />
 })}
 </div>
)}
 />
)

5.7.2.1 Skus Component Brekdown

query ProductPrices {
 prices: allStripePrice(
 filter: { active: { eq: true }, currency: { eq: "usd" } }
 sort: { fields: [unit_amount] }
) {
 edges {
 node {
 id
 active
 currency
 unit_amount
 product {
 id
 name
 images
 }
 }
 }
 }
}

This is our GraphQL query which fetches the product data from Stripe. We are filtering for only active products where the currency is == US Dollars. We then retrieve the id, whether or not the product is active, the currency, unit_amount, product id, product name, and product images.

render={({ prices }) => (
 <div style={conatinerStyles}>
 {prices.edges.map(({ node: price }) => {
 const newSku = {
 sku: price.id,
 name: price.product.name,
 price: price.unit_amount,
 currency: price.currency,
 image: price.product.images,
 }
 return <SkuCard key={price.id} sku={newSku} />
 })}
 </div>
)}

We then take the results of our GraphQL query and map over the products returned and create a newSku object for each product. We then take the newSku object and pass it into the <SkuCard /> component via the sku prop.

5.7.3 Sku Card Component

Create a new file called SkuCard.js in the src/components/Products folder.

// src/components/Products/SkuCard.js
import React from 'react'

import { useShoppingCart, formatCurrencyString } from 'use-shopping-cart'

const cardStyles = {
 display: 'flex',
 flexDirection: 'column',
 justifyContent: 'space-around',
 alignItems: 'flex-start',
 padding: '1rem',
 marginBottom: '1rem',
 boxShadow: '5px 5px 25px 0 rgba(46,61,73,.2)',
 backgroundColor: '#fff',
 borderRadius: '6px',
 maxWidth: '300px',
}
const buttonStyles = {
 fontSize: '13px',
 textAlign: 'center',
 color: '#fff',
 outline: 'none',
 padding: '12px',
 boxShadow: '2px 5px 10px rgba(0,0,0,.1)',
 backgroundColor: 'rgb(255, 178, 56)',
 borderRadius: '6px',
 letterSpacing: '1.5px',
}

const SkuCard = ({ sku }) => {
 const { addItem } = useShoppingCart()

 return (
 <div style={cardStyles}>

 <h4>{sku.name}</h4>
 <p>
 Price:{' '}
 {formatCurrencyString({
 value: parseInt(sku.price),
 currency: sku.currency,
 })}
 </p>
 <button style={buttonStyles} onClick={() => addItem(sku)}>
 ADD TO CART
 </button>
 </div>
)
}

export default SkuCard

5.7.3.1 Sku Card Component Breakdown

This component is fairly straight forward. We take the data passed into it via the sku prop and then render the appropriate markup and styling accordingly. This card component will wrap each of our products and display the product image, name, price and the Add to Cart button.

5.7.4 Shopping Cart Component

Lastly, we will create a component for our shopping cart.

// src/components/CartOverview.js

import React, { useState } from 'react'

import { useShoppingCart } from 'use-shopping-cart'

const buttonStyles = {
 fontSize: '13px',
 textAlign: 'center',
 color: '#fff',
 outline: 'none',
 padding: '12px',
 boxShadow: '2px 5px 10px rgba(0,0,0,.1)',
 backgroundColor: 'rgb(255, 178, 56)',
 borderRadius: '6px',
 letterSpacing: '1.5px',
}

const Cart = () => {
 const [loading, setLoading] = useState(false)
 /* Gets the totalPrice and a method for redirecting to stripe */
 const {
 formattedTotalPrice,
 redirectToCheckout,
 cartCount,
 clearCart,
 } = useShoppingCart()

 return (
 <div>
 {/* This is where we'll render our cart */}
 <p>Number of Items: {cartCount}</p>
 <p>Total: {formattedTotalPrice}</p>

 {/* Redirects the user to Stripe */}
 <button
 style={buttonStyles}
 disabled={loading}
 onClick={() => {
 setLoading(true)
 redirectToCheckout()
 }}
 >
 {loading ? 'Loading...' : 'Checkout'}
 </button>
 <button style={buttonStyles} onClick={clearCart}>
 Clear cart
 </button>
 </div>
)
}

export default Cart

5.7.4.1 Shopping Cart Component Breakdown

Our shopping cart displays the total number of products in our cart and the total price of all of those items and two buttons. One button redirects to the checkout, which is Stripe checkout in our case, and the other empties the cart.

Our site should now look like this.

5.7.5 Finished Store

[image: Gatsby store home page]Gatsby store home page

Add a couple of products to the cart and then click “Checkout.”

If everything goes well, you will see Stripe checkout.

[image: Stripe checkout page]Stripe checkout page

Fill out the details and use the special Stripe credit card 4242 4242 4242 4242. For the expiration date, choose any date in the future and use any three-digit number for the security code.

Now, if you open up your Stripe dashboard and click on “Payments” in the left sidebar, you should see the purchase you just made.

remember to make sure the “Viewing test data” is toggled on in the left sidebar

[image: Stripe successful purchase]Stripe successful purchase

5.8 Deploying to Vercel

We will deploy our site to Vercel, another popular hosting provider for Jamstack sites. Head over there and sign up for a free account.

Before we can use Vercel, we first need to push our Gatsby site up to GitHub.

If you forget how to do this, please take a look back at the Hugo Blog project where I show you how to set this up.

After logging in, you should see Vercel’s dashboard.

[image: Vercel Dashboard]Vercel Dashboard

Click on “Import project” and then “Import Git Repository.”

[image: Vercel import repo]Vercel import repo

You then need to paste in the URL of your repo from GitHub and press “Continue.”

Vercel is smart enough to detect that this is a Gatsby project, and so the “Build and Output Settings” are already configured for us. However, we need to paste in our .env variables in the “Environment Variables” section.

[image: Vercel Environment Variables]Vercel Environment Variables

Then press the “Deploy” button.

After a couple of mins or so, you should see the following.

[image: Vercel Successful Deploy]Vercel Successful Deploy

Click the “Visit” button to see the live site.

Make a test purchase to ensure that Stripe checkout is working correctly.

5.9 GitHub Repo

The completed project can be found here inside of Gatsby-eCommerce/final GitHub Repo

5.10 Wrap Up

In this tutorial, we learned how to create an ecommerce site using Gatsby and Stripe Checkout. We also installed a shopping cart plugin and deployed our site to Vercel.

Resources

[image: Jamstack Ecosystem - Benjamas - https://bejamas.io/blog/jamstack-ecosystem/]Jamstack Ecosystem - Benjamas - https://bejamas.io/blog/jamstack-ecosystem/

Jamstack.org

Jamstack WTF

The New Dynamic

5.11 Case studies

How Smashing Magazine Manages Content: Migration From WordPress To JAMstack

5.12 Static Site Generators

Jamstack.org - Site Generators

5.12.1 Articles

Beginner’s Guide to Static Site Generators

5.13 CMS

Jamstack.org - Headless CMS

5.13.1 Articles

10 Headless CMS Options for your Jamstack Website

5.14 Jamstack Hosting

Netlify

Vercel

Surge.sh

AWS Amplify

5.15 Jamstack Platforms & Site Builders

Stackbit

Reflex JS

5.16 Chat & Messagingg

Sendbird

5.17 Scheduling

Timekit

5.18 Images & Videos

Cloudinary

5.19 Databases & Backends

Fauna DB

Redwood JS

Prisma

Hasura

Static Backend

Sheetsu

Airtable

5.20 Memberships & Subscriptions

Memberstack

Userbase

5.21 Ecommerce

Stripe

Snipcart

Crystallize

Shopify

Commerce JS

Use Shopping Cart

Jamstack Ecommerce Starter Project with Gatsby

5.22 Jamstack Themes

Jamstack Themes

5.23 Tutorials & Learning Resources

5.23.1 Blogs

Benjamas - a Jamstack Agency

Ikius

5.23.2 Repo’s

Awesome Jamstack Repo

5.23.3 Books

Free: Modern Web Development on the Jamstack

Free: The Complete Beginner Guide to JAMstack

Paid: Jamstack Handbook

5.23.4 Articles

Jamstack Explorers

100 Jamstack Tools, APIs & Services to Power Your Sites

Useful APIs to know when building a JAMstack app

Netlify - GoTrue JS - bringing authentication to static sites with just 3kb of JS

Free Code Camp - How to Build Authenticated Serverless JAMstack Apps with Gatsby and Netlify

Netlify - Manage Subscriptions and Protect Content With Stripe

Auth0 - Build a JAMstack App with Gatsby Cloud, DatoCMS, and Netlify

Auth0 - Securing Gatsby with Auth0

Gatsby E-commerce Tutorial

Learn How to Accept Money on Jamstack Sites in 38 Minutes

How to Build a Jamstack Site with Next.js and Vercel

How To Migrate From WordPress To The Eleventy Static Site Generator

5.23.5 Courses

Jamstack Training

5.23.6 YouTube Videos

Building an e-commerce site with Gatsby, Netlify, and Stripe

Learn With Jason - Sell Products on the JAMstack (with Thor 雷 神)

Free Code Camp - The Great Gatsby Bootcamp

Understanding the Jamstack

		Intro

		Dedication

		How to use this book		0.1 GitHub Repo

		0.2 Images

		0.3 Search

		1 What is the Jamstack?		1.1 JavaScript, API’s Markup		1.1.1 JavaScript

		1.1.2 API’s

		1.1.3 Markup

		1.2 Tools & services		1.2.1 Static site generator

		1.2.2 CDN - content delivery network

		1.2.3 Headless CMS

		1.2.4 Continuous Integration & Deployment

		1.2.5 Version control

		2 Jamstack Pros & Cons		2.1 Pros		2.1.1 Performance

		2.1.2 Security

		2.1.3 Reliability

		2.1.4 Cost

		2.1.5 Small Teams

		2.1.6 Developer Happiness

		2.2 Cons		2.2.1 Long build times

		2.2.2 Up front costs - steep learning curve

		2.2.3 Premature de-coupling

		2.2.4 Content previewing

		2.2.5 Third party services & API’s

		Projects

		3 Blog with Hugo, Netlify CMS & Zapier		3.1 Screencast

		3.2 Intro

		3.3 Installing Hugo

		3.4 Creating the blog

		3.5 Instant Reload & Creating new posts

		3.6 Pushing our project to GitHub

		3.7 Deploying to Netlify

		3.8 Integrating Netlify CMS		3.8.1 Netlify Identity Widget

		3.9 Integrating Zapier for automatic deploys		3.9.1 Netlify Webhook Setup

		3.9.2 Zapier Webhook Setup

		3.10 GitHub Repo

		3.11 Wrap up

		4 Membership Site with Eleventy & Memberstack		4.1 Screencast

		4.2 Intro

		4.3 Installing Eleventy

		4.4 Integrating Memberstack		4.4.1 Basic Membership

		4.4.2 Premium Membership

		4.4.3 Integrating Memberstack Memberships

		4.4.4 Installing Memberstack Header code

		4.5 Signup Form

		4.6 Login Form

		4.7 Deploying to Surge

		4.8 Testing Memberstack Integration		4.8.1 Basic Membership Signup

		4.8.2 Logging out

		4.8.3 Premium Membership Signup

		4.9 Connecting Stripe for payments

		4.10 GitHub Repo

		4.11 Wrap up

		5 Ecommerce Site with Gatsby & Stripe Checkout		5.1 Screencast

		5.2 Intro

		5.3 Installing Gatsby

		5.4 Installing & Configuring Stripe		5.4.1 Creating .env variables

		5.4.2 Stripe Checkout

		5.5 Adding Stripe as a utility function

		5.6 Adding a shopping cart

		5.7 Displaying our products		5.7.1 Index Page

		5.7.2 Skus Component

		5.7.3 Sku Card Component

		5.7.4 Shopping Cart Component

		5.7.5 Finished Store

		5.8 Deploying to Vercel

		5.9 GitHub Repo

		5.10 Wrap Up

		Resources		5.11 Case studies

		5.12 Static Site Generators		5.12.1 Articles

		5.13 CMS		5.13.1 Articles

		5.14 Jamstack Hosting

		5.15 Jamstack Platforms & Site Builders

		5.16 Chat & Messagingg

		5.17 Scheduling

		5.18 Images & Videos

		5.19 Databases & Backends

		5.20 Memberships & Subscriptions

		5.21 Ecommerce

		5.22 Jamstack Themes

		5.23 Tutorials & Learning Resources		5.23.1 Blogs

		5.23.2 Repo’s

		5.23.3 Books

		5.23.4 Articles

		5.23.5 Courses

		5.23.6 YouTube Videos

 		
 Title Page

		
 Cover

